

Multidisciplinary Approach to Identify and Mitigate the Hazard from Induced Seismicity in Oklahoma

Austin Holland, Randy Keller, Amberlee Darold, Kyle Murray, Steve Holloway, Kevin Crain

Acknowledgements

Research

- Partnership to
- Secure Energy
- for America

Industry contributors to RPSEA and fault database

Oklahoma Independent Petroleum Association (OIPA)

Oklahoma Secretary of Energy and Environment

Oklahoma Corporation Commission

OU Mewbourne College of Earth and Energy

USGS – providing many different temporary seismic stations

Oklahoma's Increase in Earthquakes Earthquake rates per year

Magnitude 4 or Greater Earthquakes

Magnitude 3 or Greater Earthquakes

Updated Oct. 20, 2014

Year 2014

Years

Earthquake Forecasting

- Probability of one or more earthquakes of magnitude (m) over the specified time
- Not a prediction, but a forecast

	Magnitude (m)					
Duration	3.0	4.0	4.5	5.0	5.5	6.0
4 Year	1.0000	1.0000	0.9212	0.4621	0.1404	0.0362
1 Year	1.0000	0.9983	0.7908	0.3179	0.0893	0.0226
6 months	1.0000	0.9755	0.5849	0.1882	0.0482	0.0117
30 days	1.0000	0.6067	0.2036	0.0540	0.0135	0.0033
10 days	0.9984	0.2470	0.0579	0.0125	0.0026	0.0006

Oklahoma Recurrence Rates & Probabilities

Oklahoma Earthquakes 2009-2014

Area of greatest increase is about 15% of Oklahoma. Captures areas of significant waste-water disposal wells

Cumulative Seismicity in Oklahoma

Oklahoma Geol. Survey www.okgeosurvey1.gov/pages/earthquakes/catalogs.php

Oklahoma Earthquakes 2009-2014

Area of greatest increase is about 15% of Oklahoma. Captures areas of significant waste-water disposal wells

RPSEA - 4D Integrated Multi-scale Reservoir and Geological Modeling

- 4D geophysical monitoring
- Localized well-based pressure tests
- Goals
 - Improve model predictive capabilities
 - Maintain a suite of progressively updated models
 - Improved representation of the preferential flowpaths
 - Geomechanical properties and fault characteristics in the subsurface

OKRaH Seismic Network

3D geologic and geophysical model

- 100,000's of
 Wells in central
 Oklahoma
- Geological and geophysical logs combined to
 build 3D models
- Incorporated into 3D seismic velocity models

required as the second second

Geospatially referenced surfaces Hunton (orange) and basement (brown).

Geologic units are assigned physical properties such as from well logs with spatially varying properties such as permeability, density, porosity, and velocity.

Gravity Observations Provide Constraints on Geologic Models

Industry Contributing to Enhanced Fault Database

Interagency Cooperation

Current Mitigation Steps

- Oklahoma Corporation Commission is the regulator of UIC Class II wells, and have implemented different mitigation strategies
 - New rules regarding reporting of injection volumes and pressures in the "Arbuckle"
 - Permit modifications; i.e. "Traffic Light System"
 - Enhanced reporting requirements in OCC areas of interest, currently 10 km around ML 4+ earthquakes
 - Not required by rule for non-Arbuckle wells, but operators have complied for requests of greater reporting
 - New permits are checked against fault maps and background seismicity

Summary

- The rate of seismicity has increased dramatically and so has the seismic hazard
- Building large geological and geophysical data sets at varying scales and dimensions
- Continue to provide data products to stakeholders and identifying new data sources
- A greater understanding of physical processes in Oklahoma will help to inform future mitigation strategies
- Multi-agency cooperation has now been solidified in the governor's Coordinating Council

Abstract

Oklahoma has experienced a very significant increase in seismicity rates over the last 5 years with the greatest increase occurring in 2014. The observed rate increase indicates that the seismic hazard for at least some parts of Oklahoma has increased significantly. Many seismologists consider the large number of salt-water disposal wells operating in Oklahoma as the largest contributing factor to this increase. However, unlike many cases of seismicity induced by injection, the greatest increase is occurring over a very large area, about 15% of the state. There are more than 3,000 disposal wells currently operating within Oklahoma along with injection volumes greater than 2010 rates. These factors add many significant challenges to identifying potential cases of induced seismicity and understanding the contributing factors well enough to mitigate such occurrences. In response to a clear need for a better geotechnical understanding of what is occurring in Oklahoma, a multi-year multidisciplinary study some of the most active areas has begun at the University of Oklahoma. This study includes additional seismic monitoring, better geological and geophysical characterization of the subsurface, hydrological and reservoir modeling, and geomechanical studies to better understand the rise in seismicity rates. The Oklahoma Corporation Commission has added new rules regarding reporting and monitoring of saltwater disposal wells, and continue to work with the Oklahoma Geological Survey and other researchers.